
Chain

OPEN

Yellow Paper

Content

Consensus

core

Block Production

Genesis Block Production

Main Block Production

Temporary Metadata

Permanent Metadata

Block Validation

6

8

8

9

13

14

Receipts

16

State

17

Sync Messages

18

Step of synchronization18

DB checker20

Transactions

Blocks

14

15

Contract

16

Init

18

Prepare DB

20

Epoch Synchronization

19

9

Parameters11

Voting11

Models

13

13

Store Synchronisation17

Cryptography

BIP32 (Hierarchical Deterministic Wallets)

BIP39 (Mnemonic code for generating deterministic keys)

21

21

Bitcoin Improvement Proposal

21

21

Elliptic-curve cryptography

Private and public keys generation

25

25

Asymmetric cryptography22

Signing transaction

Signing Block

25

26

Digital signature25

Hash Functions27

Merkle Root28

Network

Message header

Message body

30

30

Serialization protocol

30

30

Gossip Protocol31

Time Synchronization32

Smart Contract

Writing a contract33

Creation

33

33

Validation34

Evaluation35

Loading35

Execution35

State Synchronization36

Remote Procedure Call

Get info

37

39

get version40

Get uptime40

Get hardware info41

Get blockchain info43

Do generate45

Do restore46

Get wallet balance48

Get wallet votes for delegates48

Validate address50

Do derive50

Do private import53

Extended import54

Do key import in WIF format55

Get all of genesis blocks56

Get genesis block58

Get previous genesis block59

Get next genesis block60

Get all of main blocks61

Get main block63

Get previous main block64

Get next main block65

Send delegate transaction66

Get delegate transaction68

Get all reward transactions70

Get reward transaction70

Get all transfer transactions72

Send transfer transaction74

Get transfer transaction by hash76

Get transfer transaction by address78

Send vote transaction79

Get vote transaction81

Get delegates83

Get active delegates84

Get delegates view86

Get receipt88

Get cost of execution/deployment of the contract90

6

Open Chain consensus is based on the principles of DPoS and BFT algorithms.

In OPEN consensus N nodes are elected to perform a role of Active Delegates for each Epoch. An Epoch

is a predetermined interval (e.g. 21 blocks) during which an Active Delegates set is fixed. The duration of

each Epoch is limited by Timeslots. Number of Timeslots may differ in accordance with a number of

Timeslots required to reach the necessary blocks amount. For each Timeslot, a Timeslot-Leader is

defined. Timeslot-Leader is one of the Active Delegates who produces the block. At that time, the rest

of the Active Delegates act as validators. Each Timeslot includes five major phases:

PREPARE stage:

Consensus

PREPARE – the phase includes an appointment of a Timeslot-Leader, production of a block, block

broadcasting 

PREVOTE – at this stage when a node receives a block, it sends a signed pre-vote message 

COMMIT - when a node receives ⅓ of the total amount of pre-vote messages from the Active

Delegates, it validates the block and sends a signed commit message 

SAVE - when ⅔ of the total amount of commit messages from the Active Delegates is received, the

block is saved 

IDLE – this stage is known as intermission (it takes place when the block processing of the current

timeslot is finished but the next timeslot has not been started yet.). This stage is necessary for the

chain synchronization.

7

PREVOTE stage:

COMMIT stage:

8

18

A node has a scheduled job. It is invoked each time, when a timeslot number has changed. The duration

of a Timeslot is seconds. Timeslot calculation is conducted based on a timestamp, when the current

epoch starts. 

Example: Let’s consider an epoch started at a timestamp, equal to 38, the current timestamp is 51 and

the timeslot duration is 5 seconds. To calculate, when this timeslot will change, the next calculation

should be executed:

Block Production

A Genesis block is produced when the Epoch contains a sufficient amount of Main blocks. The Genesis

block sets rules for the next Epoch. In the current release, it defines a set of Active Delegates. Besides

an Active Delegates list Genesis Block also includes a Genesis Nodes list. Genesis nodes need to

support the consensus execution in case Active Delegates fail to do it. Genesis block doesn't contain

transactions and it is produced by each peer separately. In accordance with vote transactions

processed, each node gets a set of Active Delegates for the next epoch, that is contained in the Genesis

block. When Genesis blocks have the same height throughout the whole network, it’s a proof of

consensus mechanism stability.

Genesis Block Production

 Timeslot = Timeslot - ((Epoch - Timestamp) % Timeslot)

time left duration durationstart

 e.g. 5 - ((51 - 38) % 5) = 2

The timeslot is checking a sync status of the time and chain. Unless they are synchronized, the block

creation won’t happen.

G G

9

6

12

1000

A main block is created by a current Timeslot-Leader. Block has seconds to be created and sent to

Active Delegates. The rest seconds are dedicated to voting and in some cases to a synchronization

process. 

A main block may contain an unlimited amount of vote and delegate transactions plus up to

transfer transactions. Also a block producer creates one more transaction to reflect an amount of the

reward granted for the block creation. Processing of transactions results in a set of receipts and

states.

 

State describes a wallet’s actual balance at the moment of the creation of the block that is linked to it.

Receipt is a result of transaction execution: transaction actually may be directed to multiple wallets, in

case there is a contract, which splits the incoming amount among the beneficiaries. Based on

transactions, states and receipts, node creates an appropriate merkle hash, which is to be used to form

block’s hash. At the end, a block hash is signed and a node’s public key is attached to the block to

provide other Active Delegates with a possibility to validate the signature.

The production order is specified in the Genesis block: from the most voted delegate to the one who

has received the smallest amount of votes. There could be situations, when a Delegate hasn’t managed

to produce a block in its timeslot. And such a problem is crucial for the network, as epoch should

contain exactly 21 main blocks. It is not the only threat. It is also possible that more than 34% of all

Active Delegates become unavailable. To address the issues of these kinds, a set of boot nodes is

attached to each set of Active Delegates. It ensures that if one of Delegates fails production, a boot

node will produce a missing block.

Main Block Production

Those Active Delegates who do not participate in the block creation, validate a block.

It is necessary to receive messages of three types from network to have a possibility to validate a

block and add it to the chain:

Block Validation

PendingBlockMessage – it contains information on the block’s content for validation
 

BlockApprovalMessage – it’s a message about the node’s transition into either PREPARE or COMMIT

stages. It contains the following fields:

 stageId – a digit stage identifier (2 for PREPARE stage, 3 for COMMIT stage)

 hash – a hash of the blocks that were validated

 publicKey – a key of the delegate that sent a message 

 signature – a proof that the message was created by a valid delegate

10

Block validation is executed once the node accepts an incoming block. Active delegates needs to

confirms that the following statements are true in regards to the incoming block:

If the validation process ends successfully, a node considers such a block to be a valid candidate to be

stored. But before it becomes possible, a node should accumulate a specific number of

BlockApprovalMessages:

When a node has already accumulated a sufficient number of COMMIT messages, a block is persisted

to storage

There could be such cases, when a block in a specific timeslot is not valid for the local chain. But the

node still tracks the invalid block. It means that if it collects the required amount of COMMIT messages,

the node will allow the chain synchronization.

While Active Delegates are responsible for validation, other participants of the network broadcast

blocks further and collect only commit messages, without performing any validation functions.

The block is created by the current timeslot owner

The transactions merkle root is valid

The states merkle root is valid

The seceipts merkle root is valid

The reward transaction is created correctly

The transactions are valid

Resulted receipts and states coincide with the message’s ones

34% from the Active Delegates count of PREPARE messages

67% from the Active Delegates count of COMMIT messages

11

The table below describes the parameters used in the consensus mechanism.

Parameters

Every node can exist in three states: Peer, Delegate, Active Delegate.

Voting

Peer – a node with minimal influence in the Consensus reaching process. It can store a incomplete

ledger (light synchronization)

epochHeight 21 Number of main blocks in a single epoch.

When this number is reached, it means that

the next block should be agenesis one and  

it will start new a epoch

delegatesCount 21 Number of active delegates in one epoch

that are to be fetched with s rating order

feeDelegateTx 3 Fee for creation of a delegate transaction

feeVoteTxFor 3 Fee for creation of a vote transaction

timeSlotDuration 6000 Amount of time to create block and

broadcast it to network

genesisAddress 0x00000000000

0000000000000

0000000000000

000

Address of the genesis account, that is a

sender of the fixed reward for the block

creation

blockCapacity 1000 Maximum amount of transfer transactions

to be packed in the main block

timeSlotInterval 12000 Amount of time needed to reach consensus

and sync local storage

amountDelegateTx 10
Amount necessary for creation of a

delegate transaction

rewardBlock 10 Amount of reward for block creation

feeVoteTxAgainst 1 Fee for recall of a vote transaction

Check Peer Active Delegate

12

Delegate – a trusted node with a full ledger

Active Delegate – a node that is elected to fulfill a role of one of block producers for a specific epoch

To ensure decentralization of the network, participants who want to become block producers, need  

to become Delegates and stakeholders of the network have an opportunity vote for the Delegates.  

In this process stakeholders’ voting weight depends on the size of their stake.

To become a Delegate, a Peer should initiate a Delegate-Transaction which bonds a specific Node with  

a specific Wallet. Each Peer can be bonded with only one Wallet. But one Wallet can be bonded with  

a lot of Peers. Wallets can vote for Delegates as well as recall their votes. Each Delegate has its rating

which is calculated as a sum of the weights of votes in its favor.
  

Each Wallet has only one vote, which could be given to only one specific Delegate. Thanks to the

possibility to recall votes, a stakeholder can choose a Delegate, vote for him and then to change his

mind and vote for another Delegate after recalling his vote. There is a fixed vote transaction fee.

Votes are counted on the Genesis blocks creation. Each node chooses Delegates from its local storage

in accordance with their rating. The order is stored in the genesis block. In accordance with it, the first

block is created by the most voted delegate and the last block by the less voted one.

Voting mechanism is based on Vote-Transaction transmitting.

G

13

This package contains business logic and represents a set of rules, principles, and behavior

dependencies of domain objects. This layer consists of business models. The models are represented

by domain entities, services that implement the business logic, such as validation of models,

repositories designed to transfer business models between the database and the application.
  

Business entities are stored in an H2 database, this vendor was selected based on the following

requirements:

Core

Ease of use for the user, no need for additional settings;

Support embedded mode;

Support in-memory table;

Support transaction;

Support ACID;

Support Hash index;

Fast queries executing;

Small size DB file.

1 

2 

3 

4 

5 

6 

7 

8

Models are a representation of concepts from the subject area, which are represented by temporary or

permanent metadata.

Models

These data are represented by unconfirmed transactions that have not been processed and stored in

the ledger. These transactions are the source for creating blocks and are stored in the in-memory table

until it gets into a block.

There are three types of unconfirmed transactions that may exist in the application:

Temporary metadata

UnconfirmedTransferTransaction

 Amount

 Recipient Address 

 Data — field for deploy Smart Contract

14

UnconfirmedDelegateTransaction

 Delegate address

 Amount  

UnconfirmedVoteTransaction

 Delegate address

 Vote type

TransferTransactionPayload	

 Amount

 Recipient Address

 Data — field for deploy Smart Contract

These models represent a ledger. This type of data is based on transactions packed into the blocks

which makes it more convenient to work with them and validate them.

Permanent metadata

A transaction is a signed data package that is put into blocks. There are four types of transactions:

All Transactions consist of:

Transactions differ in a payload, which is specific to each transaction:

Transactions

TransferTransaction — used to transfer currency or deploy a smart contract.

DelegateTransaction — applied when a participant becomes a delegate.

RewardTransaction — contains the reward for creating a block.

VoteTransaction — used to vote for or against the delegate.

Timestamp

Fee

Sender address

Hash

Signature

Public key

Payload

15

DelegateTransactionPayload

 Delegate address

 Amount 

RewardTransactionPayload

 Wallet address

 Reward 

VoteTransactionPayload

 Delegate address

 Vote type

A block is a collective entity for various transactions, which is used to simplify processing of

transactions. There are two types of blocks: GenesisBlock is created before each epoch and determines

delegates for its epoch, MainBlock is created by the active delegate and represents a container for

processed transactions and their meta information. Blocks differ in their payload:

Blocks

GenesisBlockPayload

MainBlockPayload.

Block consist of:

Timestamp

Height

Previous Hash

Hash

Signature

Public Key

Payload

GenesisBlockPayload consists of:

Epoch Index

Active Delegates — List of active delegates for this epoch

16

MainBlockPayload consists of:

Separate merkle hashes for transactions, receipts and states determine the block content.

Reward Transaction

Vote Transactions

Delegate Transactions

Transfer Transactions

Delegate States

Account States

Receipts

Transaction Merkle Hash

State Merkle Hash

Receipt Merkle Hash

This entity is required to store smart contract information in the application. It contains a source code

of the contract in the binary form, it needs to be loaded to JVM for execution. It also contains an

address of its owner, its self-address that is used to call the contract by its address , a cost for its

execution, ABI interface smart contract that describes the methods available.

Contract

Receipt refers to a transaction and contains transaction status and all changes which it produces.

Receipts are stored in an appropriate block. Receipt contains:

Receipts

Transaction hash

Block

Set of transaction results

Transaction result contains:

From

To

Amount

Data

17

Error

Simple transfer transaction has two results. The first is the coin transfer between sender and receiver.

The second one is fee transfer between sender and block producer. Field Data serves for additional

information like an address of a smart-contract.

Execution of transactions results in state transitions that are based on receipts. For each account, only

one final state can be generated per block. While they are stored in a relevant block, the latest state

should be considered to be most up-to-date and confirmed one.

State

State contains common fields:

Address

Block Id

LIGHT — only carcass of blocks is saved.

FULL — blocks are saved with entire inner metadata (transactions, receipts, states).

AccountState contains:

Balance

Vote for

Storage — it is a serialized state of a smart contract

DelegateState contains:

Rating

Wallet Address

Create Date

Store synchronization takes place based on the synchronization mode. There can be two types of

synchronization:

Store Synchronization

18

Messages in the pre-init synchronization step:

Messages in the pre-init synchronization step:

Sync Messages

Synchronization starts when the node gets a block that meets the following requirements:

Init

Step of synchronization

BlockAvailabilityRequest — a message used to clarify whether there is a block with a hash.

 Hash

BlockAvailabilityResponse

 Hash

 Height

 Genesis Block

EpochRequestMessage

 Epoch Index

 Sync Mode

EpochResponseMessage

 Delegate Key

 Is Epoch Exists

 Genesis Block

 List of main block

Its height is greater than the height of the node’s previous block,

Previous Hash is not equal to node’s last block hash.

Set synchronization status to PROCESSING.

Request BlockAvailabilityRequest with last block hash to the randomly chosen last known

active delegate, and schedule the request to the next active delegate if the previous one

doesn’t respond.
 

Obtain BlockAvailabilityResponse, cancel the previous scheduled task.

If BlockAvailabilityResponse contains height = -1, it means that it’s not a valid epoch and it

should be removed.

19

All data for this epoch should be removed.

Repeat the first step with BlockAvailabilityRequest.

Else start synchronization by node’s last genesis block.

In this step SyncSession takes place in accordance with SyncMode (FULL or LIGHT) and it starts to send

requests to previous epochs.

Received blocks that are considered to be valid are added to SyncSession.Storage. When received

blocks are considered to be invalid, the session is deleted along with the storage and a new session

begins.

When all epochs are downloaded, they are saved into the DB and the synchronization status is to be

changed to SYNCHRONIZED. Synchronization continues until the last relevant block in the network is

received.

Epoch Synchronization

SyncSession which is an instance of a session consists of:

Sync Mode

Last Local Genesis Block

Current Genesis Block

Epoch Quantity - Count of epoch to be downloaded.

Storage - temp store for received blocks.

Сompletion flag

Epoch Added - Count of epoch added.

20

In case with synchronization of a ‘Full’ type, additionally, it needs to validate block transactions.

Delete invalid chain part

In case when the chain has an invalid block, the DB checker removes this part of the chain from this

block to its end.

After the validation is complete, the application is started.

A DB checker runs before the start of application and it prepares DB for running the application.

DB checker

DB checker’s function is to prepare the database for work. This method uses a sync mode parameter.

This parameter is necessary to assign a node synchronization type. A sync mode may have the

following values:

Prepare DB

Light

Full

When a ‘Light’ synchronization takes place, the DB checker validates the following block components:

Signature

Hash

Previous hash

Timestamp

Height

Receipts

States

21

Cryptography is one of the core aspects of blockchain technology.

Cryptography

OPEN supports HD Wallets generation. Wallets of this type can be shared partially or entirely with

different systems that may presuppose or not presuppose spending coins.

HD Wallets generate a tree-like structure of keys. In such a structure, a parent key can derive a

sequence of children keys, each of them can derive a sequence of grandchildren keys, and so on, to an

infinite depth.

According to the BIP32 rules, at each level of the hierarchy, the spawning node has three objects: a

private key, a public key and a chain code that is used to generate the next level of a hierarchy.

Child Key Derivation Function ~ CKD(x,n) = HMAC-SHA512(Xchain, XpublicKey || n)

BIP32 (Hierarchical Deterministic Wallets)

Bitcoin Improvement Proposal

22

Derivation path: m / account ’ / chain ’ / address ’, where account, chain, and address are indexes in the

path.

The external chain (index = 0) is used to send and receive funds from others (m/0/0/0). The internal

chain (index = 1) can be used to generate an address for receiving changes (m/0/1/0).

Wallets are divided into groups (e.g. personal, work) in accordance with the second parameter. E.g.

m/0/0/0 - personal account, m/1/0/0 - work account

Derivation path of the default account is m/0/0/0

Examples:

Derivation path: m/0/0/0

Seed phrase

monkey tissue dream ketchup myth luxury fee plate teach either shadow web

Public key

03a882e56974a27642f9a97ba9a7936c4cdab86894c9959ef8708fa1f9f7118b1c

Private key

408d2eea0f9acee62d19643822d7084cd9c717a5958fba8b1f63792500a78f9a

Wallet address

0xd38f124D7FE13e5693C59e6729B88D482943723C

Seed phrase

monkey tissue dream ketchup myth luxury fee plate teach either shadow web

Public key

02277d37802afb983286ca2103d3ee16e8e86b34f000f5364f4c67a25f82d15d2d

Private key

0fc23fcf9f035d1dc5823c44cf22e38acab3fe7229251aad2adbd9debda876d9

Wallet address

 0x10d32FbBEF1b9A67EE37Da416b187E435dD6CF50

Derivation path: m/0/0/1

BIP32 document
Hierarchical deterministic wallets are described in

Mnemonic code or mnemonic sentence is a group of easy to remember words. It could be written on

paper or spoken over the telephone.

The mnemonic must encode entropy in a multiple of 32 bits. Though with more entropy security is

improved, the sentence length increases.

BIP39 (Mnemonic code for generating deterministic keys)

https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki

23

Let:

The following table describes the relation between the initial entropy length (ENT), the checksum

length (CS) and the length of the generated mnemonic sentence (MS) in words.

OPEN uses a 12-length mnemonic sentence to generate a seed.
  

From mnemonic to seed:

The mnemonic code represents 128 to 256 bits, which are used to derive a longer (512-bit) seed

through the use of the key-stretching function PBKDF2. The resulting seed is used to create a

deterministic wallet and all of its derived keys.

ENT - entropy length, bit, ENT ∈ [128,256]

CS - checksum length, bit

MS - mnemonic sentence length, words count

160 5 15

224 7 21

192 6 18

256 8 24

128 4 12

Generating the mnemonic:

Create a random sequence (entropy) of 128 to 256 bits. 

Create a checksum by taking the first ENT / 32 bits of its SHA256 hash. 

Add the checksum to the end of the random sequence. 

Divide the sequence into sections of 11 bits, using those to index a dictionary of 2048 predefined words. 

Convert these numbers into words and use the joined words as a mnemonic sentence.

1 

2 

3 

4 

5

ENT CS = ENT / 32

 MS = (ENT + CS) / 11

24

Examples:

Entropy input  

(128 bits)

0c1e24e5917779d297e14d45f14e1a1a

Seed (512 bits)

3338a6d2ee71c7f28eb5b882159634cd46a898463e9d2d0980f8e80dfbba5b0fa0

291e5fb888a599b44b93187be6ee3ab5fd3ead7dd646341b2cdb8d08d13bf7

Mnemonic  

(12 words)

army van defense carry jealous true garbage claim echo media make crunch

BIP39 document
Mnemonic code generation is described in

In OPEN, asymmetric cryptography is used to produce a digital signature of transactions and blocks.

Asymmetric cryptography is known as public key cryptography. It allows information to be transferred

through a public key that can be shared with anyone.  Public and private keys both are mathematically

related and have a specific role in the operation. Data that is encrypted with a private key can only be

decrypted with a public key and vice versa. You cannot encrypt and decrypt data using the same key.

OPEN applies the Elliptic Curve Digital Signature Algorithm, or ECDSA, which is used to create public

and private keys.

Asymmetric cryptography

https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki

25

Elliptic curve cryptography is a type of asymmetric cryptography based on the discrete logarithm

problem as expressed by addition and multiplication on the points of an elliptic curve.

OPEN uses a specific elliptic curve and set of mathematical constants, as defined in a standard called

secp256k1, that was established by the National Institute of Standards and Technology (NIST). The

secp256k1 curve is defined by the following function, which produces an elliptic curve:

The mod p indicates that this curve is over a finite field of prime order p.

Elliptic-curve cryptography

The private key is randomly generated from a seed phrase.

When a private key is multiplied by a predetermined point on the curve called the generator point G,

another point somewhere else on the curve is produced. This is the corresponding public key K.

The generator point is specified as part of the secp256k1 standard and is always the same for all keys.

Elliptic-curve cryptography

To sign a transaction a sender encrypts transaction bytes with his private key. The public key of the

sender as well as the resulting signature are included in the transaction.

Transaction bytes include:

Signing transaction

y = mod p = (x +7) mod p

2 3

A digital signature is an encrypted electronic stamp used to authenticate digital data or information

and securing sensitive information.

OPEN uses digital signatures to verify the identity of the person sending a transaction or a block.

Digital signature

Timestamp

Sender address

Fee

Amount

26

Recipient address (transfer transaction)

Delegate Key (delegate and vote transaction)

Vote type (vote transaction)

HEADER

Timestamp 

Free (?) 

Sender Address

PAYLOAD

Amount (Reward) 

Reciplent Address 

Data

FOOTER

Hash 

Signature 

Public Key

HEADER

Timestamp 

Free (3) 

Sender Address

PAYLOAD

Delegate Key 

Amount (10)

HEADER

Timestamp 

Free (0) 

Sender Address

PAYLOAD

Vote Type (For or

Against) 

Delegate Key

FOOTER

Hash 

Signature 

Public Key

FOOTER

Hash 

Signature 

Public Key

To sign a main block, an Active Delegate encrypts block bytes with his node’s private key. Since a

Genesis block is generated by each peer independently, the peer uses his node’s private key to encrypt

the block.

The signer keeps the public key of the node and the resulting signature in the block.
  

Main block bytes include:

Signing Block

Timestamp

Block height

Previous block height

Transactions Merkle Hash

States Merkle Hash

Receipts Merkle Hash

27

Genesis block bytes include:

Timestamp

Block height

Previous block height

Active delegates’ public keys

Epoch index

Hashing is the process of taking the input of any length and turning it into a cryptographic fixed output

through a mathematical algorithm.

OPEN uses different types of hash functions for different purposes.

SHA256 is one of the strongest hash functions available. In OPEN it is used to generate a transaction

hash, a block hash, a state, and a receipt hash by hashing their bytes. The resulting hash is 265-bit

long.

Keccak256 is another hash function used by OPEN. Wallet address is a keccak256 hash of the public

key.

Hash Functions

28

PBKDF2 is a key-stretching function with a sliding computational cost, aimed to reduce the

vulnerability of encrypted keys to brute force attacks. PBKDF2 hash is used to generate a seed from a

mnemonic sentence.

HMAC is a specific type of a message authentication code (MAC) which includes a cryptographic hash

function and a secret cryptographic key. HMACSHA512 function is used in the key derivation algorithm

described in BIP32.

RIPEMD160SHA256 is also used for key derivation. This function presents a combination of RIPEMD160

and SHA256 hashes. RIPEMD160 is applied thanks to its ability to produce the shortest hashes the

uniqueness of which is still sufficiently assured.

Merkle trees provide a cryptographically authenticated data structure. A Merkle tree is a tree-like

structure in which every leaf node is a hash of a block of data and every non-leaf node is a hash of its

children. All these elements are united in a single hash called the Merkle root.

Merkle Root

29

Each OPEN main block has the transaction Merkle root, states Merkle root and receipt Merkle root.

Using a Merkle tree provides the integrity and validity of transactions, states and receipts using their

hashes that an active delegate has to maintain.

If an attacker changes any parameter in the transaction of the block, transaction Merkle root will

change along with the nodes of the Merkle tree. The active delegate will consider this main block to be

invalid.

30

Network

OPEN Chain nodes communicate via the TCP transport protocol which presupposed a special format of

exchanging message. Conventionally, a message has two parts:

Serialization protocol

Message header

Message body

Each message strictly contains 3 fields:

Message header

Version - indicates a protocol version. If a nodes protocol version is not equal to the one

specified in a header this message will be ignored
 

Time - timestamp, when a message was sent. There is a10-second expiry period, when a

message is considered to be relevant. If it is transmitted after the allocated period expires,

the message will be ignored
 

Message Type - indicates type of message

The message body contains all required fields to create an instance and to handle it by node. Each field

is decoded, according to its type. The type of a field pre-determines the amount of bytes that have to

be read and stored. The list below includes the primitive types of fields and and the amount of bytes

that should be read in each case:

Message body

Byte - 1 byte

Short - 2 byte

 Integer - 4 byte

Long - 8 byte

Float - 4 byte

Double - 8 byte

Boolean - 1 byte

Character - 2 byte

31

A protocol allows to serialize a string data type. To perform that, an Integer value should be serialized

before the set of characters that describe the string’s length. The same approach is applied to

collections: the amount of elements should be serialized before the relevant content.

The gossip protocol describes an approach to build communication in a peer-to-peer network. Let’s

suppose that we have a peer, and this peer is connected to other nodes. And it sends messages to all

other peers. In OPEN Chain node should obtain at least 4 connections to operate in the network (the

maximum number of connections allowed is 16). Peers, that have received a message, handle it and

pass further in the network. That is a principle according to which a message is broadcasted across

that network. A message won’t be passed further in two cases:

Gossip Protocol

If a node that accepted this message had already got such a message previously

 If a message is ignored due to the fact that its period has already expired

32

For the application to work properly, a correctly synchronized system clock with an accuracy of 100

milliseconds is required.

When the application is being started, a ClockChecker requests time offset from the NTP servers, with

a certain time interval. If the received offset is has valid values, the application runs in a normal mode,

otherwise, if this parameter is not synchronized, the application will require to set the correct time. If it

is not fulfilled, correct functioning is not guaranteed.

Time Synchronization

33

Smart contracts are account holding objects on the Open Platform blockchain. They contain code

functions, take decisions, store data, and send ether to others. Contracts are defined by their creators,

but their execution, and by extension the services they offer, is provided by the Open Platform network

itself. They will exist and be executable as long as the whole network exists, and will disappear only in

the case if they were programmed to self destruct.

What can you do with contracts? You can transfer money to other wallets, save different type of

information and interact with it. But for our getting started guide let's do some simple things: To start

you will create a classic "Hello World" contract, then you can build your own crypto token to send to

whomever you like.

Smart Contract

Creation

Before you begin, prepare

any jvm environment

your patience and curiosity

1 

2

Any smart contract must extend the superclass “SmartContract”, which has an abstract method

“execute”.

The example will be in Kotlin:

Then you need to compile the class and get bytecode.

Writing a contract

class HelloWorld : SmartContract() {

 override fun execute() {

 println("Hello world")

 }

}

34

Validation

Before uploading smart contract to the blockchain the Node validates it in accordance with a number

of restrictions.

You can validate it yourself. In order to do it, there is a special class “SmartContractValidator”, which

has a method “validate”. This method will return true if bytecode is right and false if not.

Checking by this method runs with the usage of the following criteria:

 Boolean::class.java.name,

 Char::class.java.name,

 Byte::class.java.name,

 Short::class.java.name,

 Int::class.java.name,

 Long::class.java.name,

 Float::class.java.name,

 Double::class.java.name,

 Void::class.javaPrimitiveType!!.name,

 "java.lang.Boolean",

 "java.lang.Character",

 "java.lang.Byte",

 "java.lang.Short",

 "java.lang.Integer",

 "java.lang.Long",

 "java.lang.Float",

 "java.lang.Double",

 "java.lang.String",

 "java.lang.StringBuilder",

 "java.lang.StrictMath",

 "java.util.ArrayList",

 "java.util.Arrays",

 "java.util.HashMap",

 "java.util.HashSet"

There is a blacklist of the Object class methods used to stop a smart contract.

 "java.lang.Object.getClass",

 "java.lang.Object.wait",

 "java.lang.Object.notify",

 "java.lang.Object.notifyAll"

35

Evaluation

The cost of the contract is estimated in the framework of the deployment phase. The estimate is based

on bytecode, each opcode has its own cost.

Сalculation formula

Loading

After all the checks we can begin uploading a smart contract to the blockchain. All you need to dois to

insert a ready-made bytecode in the field of Node in the browser and send a transfer transaction.

Under the hood, everything is a little bit more complicated. Before you save it to the blockchain this

smart contract name is changed in order to make it unique in the JVM. Then the Node uploads it to the

JVM and initializes object default data. After this, the Node serializes a state and sends it to the

blockchain.

Execution

The execution of the contract is triggered when funds are received in the account of the contract. You

can do this by sending a transfer transaction which presupposes specifying the address of the contract

in the recipients.

 

Steps of execution:

m m m+n m+n

contractCost = (countOpcode *costOpcode)+...+(countOpcode *costOpcode)

Search for the contract and loading it from the DB into the JVM using its specific address.

Creation of the instance of the contract and initialization of the inner state.

Execution.

Performance of some of the tasks that are written in it. For example: creation of transfer transactions

to a specific address.

1 

2 

3

Saving execution results and transfer of funds to the delegate for execution.
4

a.

Saving all transfer actions in DB like Receipts.

If the contract fails, it saves the cause of error in Receipt.

a. 

b.

36

Serializing of the inner state into the DB if the contract is successfully executed.

Transfer of odd money back to sender`s wallet after a successful execution.

If the contract`s wallet amount is not fully spent, it remains on the contract account.

5 

6

a.

State Synchronization

Each contract has an inner state that includes a number of variables, they all are stored in a serialized

form in the DB.

Before the contract is executed, its state is loaded from the DB and pushed into the instance.

After a successful execution, the inner state of the contract is serialized and stored in the DB for the

next executions. When execution fails, the state does not change.

37

The RPC is used to call REST-endpoints.

Remote Procedure Call

 /rpc/info

Get basic node information.

/rpc/info/getUptime

Get node up time.

/rpc/explorer/info

Get information about blockchain

/rpc/account/doRespore

Restore an account with a seed

phrase

/rpc/accounts/wallets/{address}/del

egates

Get wallet votes for delegates

/rpc/info/getVersion

Get a node communication protocol

version.

/rpc/account/doGenerate

Generate a new account

/rpc/accounts/wallets/{address}/bal

ance

Get a wallet balance by the wallet

address

/rpc/account/keys/doDerive

Create a new account by a derivation

path.

/rpc/accounts/wallets/validateAddr

ess

Validate a wallet address

/rpc/accounts/keys/doExtendedImp

ort

Restore an account with a private or

public extended key.

/rpc/accounts/keys/doPrivateImpor

t

Get a public key and a wallet address

for a private key.

/rpc/accounts/keys/doWifImport

Restore an account with a private key

the in WIF (Wallet import format)

format.

/rpc/info/getHardwareInfo

Get node hardware info: CPU and RAM

info, total storage size and network

interfaces info.

endpoint Description Explorer

Wallet 

Client

38

/rpc/blocks/genesis Get a list of all genesis blocks

/rpc/blocks/genesis/{hash}/previous

Get the previous genesis block by

hash

/rpc/blocks/genesis/{hash}

Get a genesis block by hash

/rpc/blocks/main Get a list of all main blocks

/rpc/blocks/genesis/{hash}/next Get the next genesis block by hash

/rpc/blocks/main/{hash}/previous Get the previous main block by hash

/rpc/blocks/main/{hash} Get the main block by hash

/rpc/blocks/main/{hash}/next Get the next main block by hash

/rpc/transactions/delegate Send a delegate transaction

/rpc/transactions/reward Get a list of all reward transactions

/rpc/transactions/delegate/{hash} Get a delegate transaction by hash

/rpc/transactions/reward/{address}

Get a reward transaction by a

recipient address

/rpc/transactions/transfer Get a list of transfer transactions

/rpc/transactions/transfer/{hash} Get a transfer transaction by hash

/rpc/transactions/vote Send a vote transaction

/rpc/transactions/transfer Send a transfer transaction

/rpc/transactions/transfer/address/

{address}

Get a transfer transaction by a wallet

address

39

/rpc/delegates Get a list of all delegates

/rpc/transactions/vote/{hash} Get a vote transaction by hash

/rpc/delegates/view Get a list of all delegates rating

/rpc/delegates/active Get a list of all active delegates

/rpc/contracts/estimation

Get a cost of execution/deployment of

the contract

/rpc/transactions/{hash}/receipt

Get a receipt by hash of the

transaction

These REST-endpoints are used to get current information about the efficiency of the node.

Get info

Get basic node information.

HTTP method: GET

Path: /rpc/info

Parameters: None

Response:

{

 "timestamp": 1533201403476,

 "version": "1.0.0",

 "payload": {

 "publicKey": "02a54008f5deea06a1bd9ec995ff458d6ffa235ba40be48034a8fab6873c805bfa",

 "host": "127.0.0.1",

 "port": 9190

 }

}

40

publicKey String

Node's public key

port String

Node's external port

host String

Node's external host

Get version

Get a node communication protocol version.

Type: GET

Path: /rpc/info/getVersion

Parameters: None

Response:

{

 "timestamp": 1533201403476,

 "version": "1.0.0",

 "payload": null

}

Get uptime

Get node up time.

Type: GET

Path: /rpc/info/getUptime

Parameters: None

Response:

Attribute Type Description

Response fields:

41

{

 "timestamp": 1533201463165,

 "version": "1.0.0",

 "payload": 4007529

}

Get hardware info

Get node hardware info: CPU and RAM info, total storage size and network interfaces info.

Type: GET

Path: /rpc/info/getHardwareInfo

Parameters:None

Response:

payload Long

Node up time in millis

Attribute Type Description

Response fields:

42

 {

 "timestamp": 1533201525728,

 "version": "1.0.0",

 "payload": {

 "cpu": {

 "model": "158",

 "frequency": 3400000000,

 "numberOfCores": 4

 },

 "ram": {

 "free": 2727124992,

 "used": 13984133120,

 "total": 16711258112

 },

 "totalStorageSize": 250059350016,

 "networks": [

 {

 "interfaceName": "veth295f073",

 "addresses": [

 "fe80:0:0:0:d0:c9ff:feb2:4f15%veth295f073"

]

 },

 {

 "interfaceName": "br-23bcd0f6ba49",

 "addresses": [

 "fe80:0:0:0:42:14ff:fe98:3253%br-23bcd0f6ba49",

 "172.21.0.1"

]

 }

]

 }

}

cpu CPUInfo

Node's CPU information

totalStorageSize

 Long

Node's total storage size

ram RAMInfo

Node's CPU information

Attribute Type Description

Response fields:

Payload:

43

model String

Processor model

numberOfCores Int

Number of processor’s cores

frequency Long

Processor frequency

Attribute Type Description

CPUInfo:

free Long

Free memory space

total Long

Total memory space

used Long

User memory space

Attribute Type Description

RamInfo:

interfaceName String

Interface name

addresses String

List of IP addresses in IPv4 and

IPv6 formats

Attribute Type Description

NetworkInfo:

Get blockchain info

Get information about blockchain

Type: GET

Path: /rpc/explorer/info

44

Parameters: None

Response:

{

 "timestamp": 1549891484737,

 "version": "1.8.0",

 "payload": {

 "nodesCount": 1,

 "blocksCount": 5435,

 "transactionsCount": 4529,

 "blockProductionTime": 2487,

 "transactionsPerSecond": 0,

 "currentEpochNumber": 906,

 "currentEpochDate": 1549891508021,

 "delegatesCount": 5}

}

nodesCount Int

Countrunning nodes

transactionsCount

Long

Count created transactions

transactionsPerSecond

Long

How many transactions are

created per second

nodesCount Long

Count created blocks

blockProductionTime

 Long

Average block production time

in millis

delegatesCount Byte

Delegate count dedicated to

create and approve blocks

currentEpochDate Long

Current epoch date in millis

Attribute Type Description

Response fields:

45

Do generate

Generate a new account

Type: GET

Path: /rpc/account/doGenerate

Parameters: None

Response:

{

 "timestamp": 1533200140353,

 "version": "1.0.0",

 "payload": {

 "seedPhrase": "recipe provide own axis bean exotic grocery unit flock barrel bike erosion",

 "masterKeys": {

 "publicKey": "02a54008f5deea06a1bd9ec995ff458d6ffa235ba40be48034a8fab6873c805bfa",

 "privateKey": "bf9d87c65ded8399ce2d4835d386698ae28aaa337c4893956bd867303860347c"

 },

 "defaultWallet": {

 "keys": {

 "publicKey": "0342bf5912bb2dc42e0485a7ef3d3aa054888b04999cd9bc927ff309cfaca8d55d",

 "privateKey": "db962381653a277b5bb5f2b2e76722948a1d361b22e13237c6eb45c889a2eed8"

 },

 "address": "0x62999a450A583A238BFE3B1d50293eb8C74847fD"

 }

 }

}

seedPhrase String

Seed phrase of 12 words. That is

key to restore an account, it

should be kept in a secret

defaultWallet
 WalletDto

Default account information

that includes a pair of keys and

an address. The private key

must be kept in a secret. The

derivation path of the default

account is m/0/0/0

masterKeys KeyDto

Pair of master keys. Keys are

serialized

Attribute Type Description

Response fields:

Payload:

46

publicKey String

Public key

privateKey String

Private key. It must be kept in a

secret

Attribute Type Description

KeyDto:

keys KeyDto

Pair of account keys

address String

Wallet address. It starts with 0x

Attribute Type Description

seedPhrase String

Seed phrase of 12 words

Attribute Type Description

WalletDto:

Do restore

Restore an account with a seed phrase

Type: POST

Path: /rpc/account/doRespore

Parameters:
seedPhrase

47

{

 "timestamp": 1533201172635,

 "version": "1.0.0",

 "payload": {

 "seedPhrase": "multiply fault butter script extend exotic luxury ocean matter session version play",

 "masterKeys": {

 "publicKey": "02bb9808c494ff0d7cbf2621d8ba5687819b69a4b9ef64267033369174e56a56a9",

 "privateKey": "15a0dc46df5e4f7285ec8ce1e40c665eddae0b2d8c766b1d3d362889e3a6ee1f"

 },

 "defaultWallet": {

 "keys": {

 "publicKey": "02b28915709de8260a529155fb83bc487fe076d933f864b3e37f953fd8d0cbfd20",

 "privateKey": "7589651497f5dc605be8782d4e21fc63b2b0652c4b99e6790c33f14e0bf9bda3"

 },

 "address": "0x8A1D90a716DB145ef5677553fAc096608416eEE9"

 }

 }

}

Response:

seedPhrase String

Seed phrase of 12 words. That is

a key to restore an account. It

must be kept in a secret

defaultWallet
 WalletDto

Default account information

that includes a pair of keys and

an address. The private key

must be kept in a secret. The

derivation path of the default

account is m/0/0/0

masterKeys KeyDto

Pair of master keys. Keys are

serialized

Attribute Type Description

Response fields:

Payload:

48

Type: GET

Path: /rpc/accounts/wallets/{address}/balance

Parameters: address

address String

Address of a wallet the balance

of which should be received

Attribute Type Description

{

 "timestamp": 1533200378781,

 "version": "1.0.0",

 "payload": 1500

}

Response:

Get wallet votes for delegates

Get wallet votes for delegates

Type: GET

Path: /rpc/accounts/wallets/{address}/delegates

Parameters: address - wallet address (PageRequest supported)

Get wallet balance

Get a wallet balance by a wallet address.

49

{

 "timestamp": 1536926823153,

 "version": "1.1.0",

 "payload": {

 "totalCount": 22,

 "list": [

 {

 "address": "0x51c5311F25206De4A9C6ecAa1Bc2Be257B0bA1fb",

 "delegateKey": "02c4aedc4a7e2d8cc0e73e6dfb428e8555adc8a1b74207cb61143babd3e04be63f",

 "rating": 346,

 "votesCount": 1,

 "timestamp": 1532345018021,

 "recalled": true

 }

]

 }

}

Response:

totalCount Long

Total votes for delegates count

list

VoteDelegateDto[]

List of vote info

Attribute Type Description

Response fields:

Payload:

address String

Wallet address. It starts with 0x

rating

 Long

Delegate’s rating

delegateKey String

Delegate’s public key

Attribute Type Description

VoteDelegateDto:

50

votesCount Long

Amount of votes for a delegate

recalled Boolean

Flag if a vote was recalled

timestamp Long

Delegate registration time in

mills

Validate address

Validate a wallet address

Type: POST

Path: /rpc/accounts/wallets/validateAddress

Parameters: address

Response:

Do derive

Create a new account by a derivation path.

Type: POST

Path: /rpc/account/keys/doDerive

200 OK if valid address

400 Bad request if invalid address

{

 "timestamp": 1533200378781,

 "version": "1.0.0",

 "payload": {

 "address": "0xD6A196f6E1387343f9939C1989993bAd3273FE28"

 }

}

51

seedPhrase String

 A seed phrase of 12 words

derivationPath String

A path to derive an account

Attribute Type Description

Parameters: seedPhrase, derivationPath

Derivation path

Path - m/*/*/*.

Starts with 'm'

First *: account index

Second *: chain index (0 - external chain, 1 - internal chain)

Third *: wallet account index (default is 0)

The first generated account is derived by m/0/0/0 path. Next wallet is m/0/0/1, second - m/0/0/2, etc.

An external chain is used to spend and receive funds from others (m/0/0/0).

An internal chain can be used to generate an address for receiving changes (m/0/1/0).

To divide your wallets into groups (e.g. personal, work) use the second parameter. E.g. m/0/0/0 -

personal account,

m/1/0/0 - work account

Response:

{

 "timestamp": 1533201254959,

 "version": "1.0.0",

 "payload": {

 "keys": {

 "publicKey": "02f4cafe456378101d7f8660dda0fa2a3811b183707510030ee36a2e744dd57e77",

 "privateKey": "99c9810b8a84ee4234d01acd8edd866a345f286a7d099c73cdb2937adf54a0c8"

 },

 "address": "0xC2d5a01Cc22295fF4cC49dB5A0013cE911D9A5cb"

 }

}

52

publicKey String

A public key generated by a

private key

address String

A wallet address generated by a

private/public key pair

privateKey String

The same private key that was

sent to the node

Attribute Type Description

Response fields:

53

publicKey String

A public key generated by a

private key

address String

A wallet address generated by a

private/public key pair

privateKey String

The same private key that was

sent to the node

Attribute Type Description

Response fields:

Do private import

Get a public key and a wallet address for a private key.

Type: POST

Path: /rpc/accounts/keys/doPrivateImport

Parameters: decodedKey

decodedKey String

A private key generated by a

seed phrase

Attribute Type Description

{

 "timestamp": 1549895244810,

 "version": "1.8.0",

 "payload": {

 "keys": {

 "publicKey": "02b942e77b68f7ce8c703ff53e09f5e0b75b65c8501b5f46aa0cac073c1bbed5ba",

 "privateKey": "64ce8d8ccd824ffa36e2f85b858cae539a40f7e91a36e5cdee89ed6e8aca2225"

 },

 "address": "0x66a1d6ef9ADf66E4Acd228a0E01ccbB9cEC054bF"

 }

}

Response:

54

Extended import

Restore an account with a private or public extended key.

Type: POST

Path: /rpc/accounts/keys/doExtendedImport

Parameters: decodedKey

decodedKey String

A serialized private or public

key. When a public key is being

imported, a private key isn’t

generated

Attribute Type Description

{

 "timestamp": 1549895244810,

 "version": "1.8.0",

 "payload": {

 "keys": {

 "publicKey": "02b942e77b68f7ce8c703ff53e09f5e0b75b65c8501b5f46aa0cac073c1bbed5ba",

 "privateKey": "64ce8d8ccd824ffa36e2f85b858cae539a40f7e91a36e5cdee89ed6e8aca2225"

 },

 "address": "0x66a1d6ef9ADf66E4Acd228a0E01ccbB9cEC054bF"

 }

}

Response:

publicKey String

A public key generated by a

private key

address String

Wallet address. It starts with 0x

privateKey String

The same private key that was

sent to the node

Attribute Type Description

Response fields:

55

Do key import in WIF format

Restore an account with a private key in the WIF (Wallet import format) format.

Type: POST

Path: /rpc/accounts/keys/doWifImport

Parameters: decodedKey

decodedKey String

A private key in the WIF format

Attribute Type Description

{

 "timestamp": 1533201349362,

 "version": "1.0.0",

 "payload": {

 "keys": {

 "publicKey": "02243584bd5c6a38278f2ef7018064356611e24cff8a4a4d0702424383bc79d182",

 "privateKey": "5528ea30ee9152e5a026722e8373bae3addb3cd97fdfe7274948b77a2df8cee8"

 },

 "address": "0xb23cDAb48FACF2B5b2Aa57Cd4DFe30fCBAdc9d79"

 }

}

Response:

publicKey String

A public key generated by a

private key

address String

Wallet address. It starts with 0x

privateKey String

The same private key that was

sent to the node

Attribute Type Description

Response fields:

56

Get all of genesis blocks

Get a list of all genesis blocks of the blockchain.

Type: GET

Path: /rpc/blocks/genesis

Parameters: PageRequest is supported

The Dto of genesis block includes the following fields:

timestamp Long

Block creation time in mullis

Attribute Type Description

height Long

Block’s height

previousHash String

Previous block hash

reward

 Long Reward for block creation

hash String

Block hash

signature String

Creator’s signature

publicKey String

Creator’s public key

delegatesCount

 Long

Number of delegates in block

epochIndex Long

Epoch index when a block was

created

57

{

 "timestamp": 1535016027080,

 "version": "1.0.0",

 "payload": {

 "totalCount": 1,

 "list": [

 {

 "timestamp": 1532345018021,

 "height": 1,

 "previousHash": "",

 "reward": 0,

 "hash": "838c84179c7e644cdf2ff0af3055ed45c6f43e0bd7634f8bd6ae7d088b1aaf0a",

 "signature": "MEUCIQCLeQuqCmS037ZfmQNtpUNNIi7QIgKNdhszih/PezHkW52q3=",

 "publicKey": "038bbbeeb867b9999934g3f334rf2g3449d1cc7208e32190184b13aaf1b",
 

 "epochIndex": 1,

 "delegatesCount": 0

 }

]

 }

}

Response:

totalCount Long

Total genesis blocks count

list

GenesisBlockDto[]

List of genesis block info

Attribute Type Description

Response fields:

Payload:

58

hash String

Hash of current block

Attribute Type Description

Response:

{

 "timestamp": 1534841188529,

 "version": "1.0.0",

 "payload": {

 "timestamp": 1532345018021,

 "height": 1,

 "previousHash": "",

 "reward": 0,

 "hash": "838c84179c7e644cdf2ff0af3055ed45c6f43e0bd7634f8bd6ae7d088b1aaf0a",

 "signature": "MEUCIQCLeQuqCrDd8nzih/PezHW52v4/tdsZxaLo4g45vJzDnLvUy98tnsgg=",

 "publicKey": "038bbbeeb867b999991cd5b146bht4g4g45g1cc72g408e32190184b13aaf1b",

 "epochIndex": 1,

 "delegatesCount": 0}

}

Get genesis block

Get a genesis block by hash

Type: GET

Path: /rpc/blocks/genesis/{hash}

Parameters: hash

59

Response:

{

 "timestamp": 1534841188529,

 "version": "1.0.0",

 "payload": {

 "timestamp": 1532345018021,

 "height": 1,

 "previousHash": "",

 "reward": 0,

 "hash": "838c84179c7e644cdf2ff0af3055ed45c6f43e0bd7634f8bd6ae7d088b1aaf0a",

 "signature": "MEUCIQCLeQuqCrDd8nzih/PezHW52v4/tdsZxaLo4g45vJzDnLvUy98tnsgg=",

 "publicKey": "038bbbeeb867b999991cd5b146bht4g4g45g1cc72g408e32190184b13aaf1b",

 "epochIndex": 1,

 "delegatesCount": 0}

}

hash String

Hash of current block

Attribute Type Description

Get previous genesis block

Get the previous genesis block by hash	

Type: GET

Path: /rpc/blocks/genesis/{hash}/previous

Parameters: hash

60

Response:

{

 "timestamp": 1534841188529,

 "version": "1.0.0",

 "payload": {

 "timestamp": 1532345018021,

 "height": 1,

 "previousHash": "",

 "reward": 0,

 "hash": "838c84179c7e644cdf2ff0af3055ed45c6f43e0bd7634f8bd6ae7d088b1aaf0a",

 "signature": "MEUCIQCLeQuqCrDd8nzih/PezHW52v4/tdsZxaLo4g45vJzDnLvUy98tnsgg=",

 "publicKey": "038bbbeeb867b999991cd5b146bht4g4g45g1cc72g408e32190184b13aaf1b",

 "epochIndex": 1,

 "delegatesCount": 0}

}

hash String

Hash of current block

Attribute Type Description

Get next genesis block

Get the next genesis block by hash	

Type: GET

Path: /rpc/blocks/genesis/{hash}/previous

Parameters: hash

61

Response:

{

 "timestamp": 1535015838153,

 "version": "1.0.0",

 "payload": {

 "totalCount": 2,

 "list": [

 {

 "timestamp": 1533813800085,

 "height": 2,

 "previousHash": "838c84179c7e644cdf2ff0af3drhehe3e0bd7634f8bd6ae7d088b1aaf0a",

 "reward": 11,

 "hash": "77bbdc1af09c33c8d6f259dd2085dc8a75ec474d807b500800d5fa3e2358ebd9",

 "signature": "MEUCIEosVTTs8oU/yP58hziUtO0od1ggelgtbgrewbav23b7fBt2rz/Tuj5af0=",

 "publicKey": "0278172a4763f9b8f73gre43gf3fg30fd7b151db5b1022760ec21802ff61fbff",

 "merkleHash": "989d4c7126fa30778clket4gw4g4g8ee731637f4d0ed23e8fd121ae540f2",

 "transactionsCount": 1,

 "epochIndex": 1

 },
   

{

 "timestamp": 1533813836054,

 "height": 3,

 "previousHash": "77bbdc1af09c33c8d6f259c8a75ec474d807b500800d5fa3e2358ebd9",

 "reward": 11,

 "hash": "2f9d98c2f26e01cebb733dded021ba81ffbda4fda6ec9633fc773498db56bb60",

 "signature": "MEQCIFn4Nf1okI5KfSe7mhH5nw6rEqWeSA1dszalS0+M0/JwRckv3w==",

 "publicKey": "03bd2e25db207c727c63f568d3d05e333b45ebaaf68777ede03594155191",

 "merkleHash": "5132b6ffe0da1a802a8d502b7d5ba30bac7ad8e7626a0d83e6cdd83e",

 "transactionsCount": 1,

 "epochIndex": 1}

]

 }

}

Get all of main blocks

Get a list of all main blocks

Type: GET

Path: /rpc/blocks/main

Parameters: PageRequest is supported

62

totalCount Long

Total main blocks count

list

MainBlockDto[]

List of main block info

Attribute Type Description

Response fields:

Payload:

MainBlockDto:

timestamp Long

Block creation time in mullis

Attribute Type Description

height Long

Block’s height

previousHash String

Previous block hash

reward

 Long Reward for block creation

hash String

Block hash

signature String

Creator’s signature

publicKey String

Creator’s public key

transactionsCount

 Long

Number of transactions in block

merkleHash String

Block’s merkle hash

epochIndex

Long

Epoch index when a block was

created

63

Response:

{

 "timestamp": 1534841080060,

 "version": "1.0.0",

 "payload": {

 "timestamp": 1533813800085,

 "height": 2,

 "previousHash": "838c84179c7e644cdf2ff0af3055ed45c6fd7634f8bd6ae7d088b1aaf0a",

 "reward": 11,

 "hash": "77bbdc1af09c33c8d6f259dd2085dc8a75ec474d807b500800d5fa3e2358ebd9",

 "signature": "MEUCIEo58hziUtO0hEA6Wtdtmf/Uo2J2po5Ut5Hb67av23b7fBt2rz/Tuj5af0=",

 "publicKey": "0278172a4763f9b8f73ee4ae0d24c00151db5b1022760ec21802ff61fbff",

 "merkleHash": "989d4c7126fa30778c31731637hjlkykiyyf4d0ed23e8fd121ae540f2",

 "transactionsCount": 1,

 "epochIndex": 1}

}

Get main block

Get a main block by hash

Type: GET

Path: /rpc/blocks/main/{hash}

Parameters: hash

hash String

Hash of current block

Attribute Type Description

64

Response:

{

 "timestamp": 163461080060,

 "version": "1.0.0",

 "payload": {

 "timestamp": 153456630085,

 "height": 3,

 "previousHash": "838c84179c7e644cdf2ff0af3055ed45c6fd7634f8bd6ae7d088b1aaf0a",

 "reward": 11,

 "hash": "fdw3453wb2rbvqeert22t34523d23d23d2a75ec474d807b500800d5fa3e2358ebd9",

 "signature": "MEreg3Ffo58hziUtO0hEA6Wtdtmf/Uo2J2po5Ut5Hb67av23b7fBt2rz/Tuj5af0=",

 "publicKey": "4565472a4763f9b8f73ee4ae0d24c00151db5b1022760ec21802ff61fbff",

 "merkleHash": "989546745g5547547778c31731637hjlkykiyyf4d0ed23e8fd121ae540f2",

 "transactionsCount": 1,

 "epochIndex": 1}

}

Get previous main block

Get the previous main block by hash

Type: GET

Path: /rpc/blocks/main/{hash}/previous

Parameters: hash

hash String

Hash of current block

Attribute Type Description

65

Response:

{

 "timestamp": 1534841080060,

 "version": "1.0.0",

 "payload": {

 "timestamp": 1533813800085,

 "height": 2,

 "previousHash": "838c84179c7e644cdf2ff0af3055ed45c6fd7634f8bd6ae7d088b1aaf0a",

 "reward": 11,

 "hash": "77bbdc1af09c33c8d6f259dd2085dc8a75ec474d807b500800d5fa3e2358ebd9",

 "signature": "MEUCIEo58hziUtO0hEA6Wtdtmf/Uo2J2po5Ut5Hb67av23b7fBt2rz/Tuj5af0=",

 "publicKey": "0278172a4763f9b8f73ee4ae0d24c00151db5b1022760ec21802ff61fbff",

 "merkleHash": "989d4c7126fa30778c31731637hjlkykiyyf4d0ed23e8fd121ae540f2",

 "transactionsCount": 1,

 "epochIndex": 1}

}

Get next main block

Get the next main block by hash

Type: GET

Path: /rpc/blocks/main/{hash}/next

Parameters: hash

hash String

Hash of current block

Attribute Type Description

66

{

 "timestamp": 1535983691015,

 "fee": 20,

 "senderAddress": "0x51c5311F25206De4A9C6ecAa1Bc2Be257B0bA1fb",

 "amount": 0,

 "delegateKey": "032f68d94d60b3295715515b8dab106ac452f622ce922d40d0c53",

 "hash": "31b2b36d5f9ff34d3345ada2ecaf39821067a50b1b23ad9b250b09368973dd59",

 "senderSignature": "MEUCIQDcIGhhsBQlwDYCWEjvwGgerABqA7s6CVMVduWPn3cc=",

 "senderPublicKey": "032f68d94d60b329bee515515b8dab106ac452f622ce922d40d0c53",

}

Send delegate transaction

Send a delegate transaction

Type: POST

Path: /rpc/transactions/delegates

Request:

Request fields:

fee Long

Transaction fee

Attribute Type Description

delegateKey

 String

Delegate’s public key

senderAddress

 String

Sender’s address

amount Long

Transaction amount

hash String

Transaction hash

senderSignature String

Sender’s signature

senderPublicKey

 String

Sender’s public key

67

Response:

{

 "timestamp": 1535983691132,

 "version": "1.0.0",

 "payload": {

 "timestamp": 1535983691015,

 "fee": 3,

 "senderAddress": "0x51c5311F25206De4A9C6ecAa1Bc2Be257B0bA1fb",

 "senderSignature": "MEUCIQDcIGhhsBQlHuCWr5gwABqA7s6CVMVduWPn3cc=",

 "senderPublicKey": "032f68d94d60b329bee59550bf965bac452f622ce922d40d0c53",

 "hash": "31b2b36d5f9ff34d3345ada2ecaf39821067a50b1b23ad9b250b09368973dd59",

 "delegateKey": "032f68d94d60e59550bf96515b8dab106ac452f622ce922d40d0c53",

 "amount": 10,

 "blockHash": null }

}

Response fields:

timestamp Long

Transaction creation time in

millis

Attribute Type Description

fee Long

Transaction fee

delegateKey

 String

Delegate’s public key

senderPublicKey String

Sender’s public key

senderAddress String

Sender’s address

senderSignature String

Sender’s signature

amount Long

Transaction amount

hash String

Transaction hash

blockHash String

Block hash

68

Get delegate transaction	

Get a delegate transaction by hash

Type: GET

Path: /rpc/transactions/delegates/{hash}

Parameters: hash

hash String

Hash of the current delegate

transaction

Attribute Type Description

Response:

{

 "timestamp": 1533201843817,

 "version": "1.0.0",

 "payload": {

 "timestamp": 1535983691015,

 "fee": 3,

 "senderAddress": "0x51c5311F25206De4A9C6ecAa1Bc2Be257B0bA1fb",

 "senderSignature": "MEUCIQDcIGhhsBQlHua7N2wGger5gwABqA7sVMVduWPn3cc=",

 "senderPublicKey": "032f68d94d60b329bee595515b8da22ce922d40d0c53",

 "hash": "31b2b36d5f9ff34d3345ada2ecaf39821067a50b1b23ad9b250b09368973dd59",

 "delegateKey": "032f68d94d60b329bee5955515b8dab106ac452f622ce922d40d0c53",

 "amount": 10,

 "blockHash": "66dd73d1a54c4f2d69f544178ebd137199db9450f82fbd49f64c5f3cc" }

}

Response fields:

timestamp Long

Transaction creation time in

millis

Attribute Type Description

fee Long

Transaction fee

delegateKey

 String

Delegate’s public key

69

senderPublicKey String

Sender’s public key

senderAddress String

Sender’s address

senderSignature String

Sender’s signature

amount Long

Transaction amount

hash String

Transaction hash

blockHash String

Block hash

70

Get all reward transactions

Get a list of all reward transactions

Type: GET

Path: /rpc/transactions/reward

Parameters: PageRequels is supported

Response:

{

 "timestamp": 1550660665058,

 "version": "1.8.0",

 "payload": {

 "totalCount": 32,

 "list": [

 {

 "timestamp": 1550656964072,

 "fee": 0,

 "senderAddress": "0x00",

 "hash": "8d5507492b08140b13f6435f8dc1f9e968ac062789d9ede0c85f",

 "signature": "MEUCIQCjHjWSlo/sIkkrtgrtyz4y4gtrvrRGR3434vfiQo=",

 "publicKey": "02b04aa1832e7a1cdbb737c167fc829472c726a12ad9a4ccf24eb",

 "payload": {

 "reward": 10,

 "recipientAddress": "0x51c5311F25206De4A9C6ecAa1Bc2Be257B0bA1fb"

 },

 "block": {...},

 "id": 1,

 "bytes": " "

 }

]

 }

}

Get reward transaction

Get a reward transaction by a recipient address

Type: GET

Path: /rpc/transactions/reward/{address}

Parameters: address

71

Response:

{

"timestamp": 1550661020317,

"version": "1.8.0",

"payload": [{

"timestamp": 1550656964072,

 "fee": 0,

 "senderAddress": "0x00",

 "hash": "8d5507492b08140b13f64353f8d1f9e968ac062789d9ede0c85f",

 "signature": "MEUCIQCjHjWSlo/sIkkBGArrCGbjDwl3T/jiYJiQo=",

 "publicKey": "02b04aa18300a6b8da1cdbb737c167fc829472c726a12ad9a4ccf24eb",

 "payload": {

 "reward": 10,

 "recipientAddress": "0x51c5311F25206De4A9C6ecAa1Bc2Be257B0bA1fb"

 },

 "block": {

 "timestamp": 1550656964072,

 "height": 2,

 "previousHash": "e53bc1dc7389bf8f970b029ef118ad9cc844a86e654b5d5ed611",

 "hash": "fcd1e25f662828525f8dedce617d651669dd8a378f449274516289b",

 "signature": "MEUCIQCcP1tyUv0oVsEpyrl4WsRIJv5Aj8vDIEDVWN9t/231gwt4=",

 "publicKey": "02b04aa1832e799503000a6b8c829472c726a12ad9a4ccf24eb",

 "payload": {

 "transactionMerkleHash": "8d5507492b08140ff9e968ac062789d9ede0c85f",

 "stateMerkleHash": "f9988b959c58e87bb445fabe4b04200754c",

 "receiptMerkleHash": "7a5d82b70289761f0cceb54db08f2d65b85d6c6a",

 "rewardTransactions": [],

 "voteTransactions": [],

 "delegateTransactions": [],

 "transferTransactions": [],

 "delegateStates": [],

 "accountStates": [],

 "receipts": []

 },

 "id": 2,

 "bytes": ""

 },

 "id": 1,

 "bytes": "”

}]

}

address String

Recipient address to get

transaction for

Attribute Type Description

72

Get all transfer transactions

Get a list of all transfer transactions

Type: GET

Path: /rpc/transactions/transfer

Parameters: PageRequest is supported

Response:

{

 "timestamp": 1536059448300,

 "version": "1.0.0",

 "payload": {

 "totalCount": 2,

 "list": [

 {

 "timestamp": 1435203843513,

 "fee": 20,

 "amount" : 1000,

 "recipientAddress": "0xC2d5a01Cc22295fF4cC49dB5A0013cE911D9A5cb",

 "senderPublicKey": "02b28915709de8260a529155fb864b3e37f953fd8d0cbfd20",

 "senderAddress": "0x8A1D90a716DB145ef5677553fAc096608416eEE9",

 "senderSignature": "02f4cafe456378101d7f8660dd07510030ee36a2e744dd57e77",

 "hash": "6709e3516a51fac52a6aa78a63528017147eb2ac56b892011ab9b",

 "blockHash": "ab2c266ab39405d0d75e3ab5abc55a3f14b435cb",

 "data": null

 }

]

 }

}

totalCount Long

Total transfer transactions

count

list

TransferTransactionDto[]

List of transfer transaction info

Attribute Type Description

Response fields:

Payload:

73

TransferTransactionDto:

timestamp Long

Transaction creation time in

millis

Attribute Type Description

fee Long

Transaction fee

amount

 Long

Transfer amount

recipientAddress

String (nullable)

Recipient’s wallet address

senderPublicKey

 String

Sender’s public key

senderAddress String

Sender’s address

hash

 String Transaction hash

data

String (nullable)

Transaction data

senderSignature

 String

Sender’s signature

blockHash

 String

Block hash

74

{

	"fee": 20,

	"amount" : 1000,

	"recipientAddress": "0xC2d5a01Cc22295fF4cC49dB5A0013cE911D9A5cb",

	"senderPublicKey": "02b28915709de8260a5291933f864b3e37f953fd8d0cbfd20",

	"senderAddress": "0x8A1D90a716DB145ef5677553fAc096608416eEE9",

	"senderSignature": "02f4caf8660dda0fa2a3811b183707510030ee36a2e744dd57e77"

}

Send transfer transaction	

Send a transfer transaction

Type: POST

Path: /rpc/transactions/transfer

Request:

Request fields:

fee Long

Transaction fee

Attribute Type Description

amount String

Transfer amount

recipientAddress

String (nullable)

Recipient’s address

senderPublicKey

String

Sender’s public key

senderAddress

 String

Sender’s address

senderSignature String

Sender’s signature

data

String (nullable)

Transaction data

75

Response:

{

 "timestamp": 1533201843817,

 "version": "1.0.0",

 "payload": {

 "timestamp": 1435203843513,

 "fee": 20,

 "amount" : 1000,

 "recipientAddress": "0xC2d5a01Cc22295fF4cC49dB5A0013cE9567j556711D9A5cb",

 "senderPublicKey": "02b28915709de8260a5291556d933f864b3e37f953fd8d0cbfd20",

 "senderAddress": "0x8A1D90a716DB145ef5677553fAc096667j656708416eEE9",

 "senderSignature": "02f4cafe456378101d7f8660b183707510030ee36a2e744dd57e77",

 "hash": "6709e3516a51fac52147ebc042yuj5675j555eb83822ac56b892011ab9b",

 "blockHash": null

	}

}

Response fields:

timestamp Long

Transaction creation time in

millis

Attribute Type Description

fee Long

Transaction fee

amount Long

Transfer amount

recipientAddress

String (nullable)

Recipient’s wallet address

senderPublicKey String

Sender’s public key

senderAddress

 String

Sender’s address

hash

String

Transaction hash

senderSignature

 String

Sender’s signature

76

blockHash String

Block hash

data

String (nullable)

Transaction data

Get transfer transaction by hash

Get a transfer transaction by hash

Type: GET

Path: /rpc/transactions/transfer/{hash}

Parameters: hash

hash String

Hash of the current transfer

transaction

Attribute Type Description

Response:

{

 "timestamp": 1533201843817,

 "version": "1.0.0",

 "payload": {

 "timestamp": 1435203843513,

 "fee": 20,

 "amount" : 1000,

 "recipientAddress": "0xC2d5a01Cc22295fF4cC49dB5A0013cE911D9A5cb",

 "senderPublicKey": "02b28915709de8260a29155076d933f864b3e37f953fd8d0cbfd20",

 "senderAddress": "0x8A1D90a716DB145ef5677553fAc096608416eEE9",

 "senderSignature": "02f4cafe456378101d7f8660dd707510030ee36a2e744dd57e77",

 	"hash": "6709e3516a51fac52a6aa78ebc0425eb83822ac56b892011ab9b",

 "blockHash": "ab2c266ab3e3ab5ab903d56d4cfbdd28b56316a26c55a3f14b435cb",

 "data": null }

}

77

Response fields:

timestamp Long

Transaction creation time in

millis

Attribute Type Description

fee Long

Transaction fee

amount Long

Transfer amount

recipientAddress

String (nullable)

Recipient’s wallet address

senderPublicKey String

Sender’s public key

senderAddress

 String

Sender’s address

hash

String

Transaction hash

senderSignature

 String

Sender’s signature

blockHash String

Block hash

data

String (nullable)

Transaction data

78

Get transfer transaction by address

Get a transfer transaction by a wallet address

Type: GET

Path: /rpc/transactions/transfer/adress/{address}

Parameters: address, RapeRequest is supported

address String

Wallet address to get

transactions for

Attribute Type Description

Response:

{

 "timestamp": 1533201843817,

 "version": "1.0.0",

 "payload": {

 "timestamp": 1435203843513,

 "fee": 20,

 "amount" : 1000,

 "recipientAddress": "0xC2d5a01Cc22295fF4cC49dB5A0013cE911D9A5cb",

 "senderPublicKey": "02b28915709de8260a529155fb33f864b3e37f953fd8d0cbfd20",

 "senderAddress": "0x8A1D90a716DB145ef5677553fAc096608416eEE9",

 "senderSignature": "02f4cafe456378101d7f8660dda83707510030ee36a2e744dd57e77",

 	"hash": "6709e3516a51fac52a6aa787ebc0425eb83822ac56b892011ab9b",

 "blockHash": "ab2c266ab39405d0d4cfbdd28b56316a26c55a3f14b435cb",

 "data": null

 }

}

Response fields:

timestamp Long

Transaction creation time in

millis

Attribute Type Description

fee Long

Transaction fee

79

recipientAddress

String (nullable)

Recipient’s wallet address

senderPublicKey String

Sender’s public key

senderAddress

 String

Sender’s address

hash

String

Transaction hash

senderSignature

 String

Sender’s signature

blockHash String

Block hash

data

String (nullable)

Transaction data

amount Long

Transfer amount

{

	"timestamp": 1435203843513,

	"fee": 20,

	"hash": "6709e35a63528017147ebc0425eb83822ac56b892011ab9b",

 "voteTypeId" : 1,

 "delegateKey": "02f4cafe456378101da2a3811b183707510030ee36a2e744dd57e77",

	"senderPublicKey": "02b28915709de8260a52fe076d933f864b3e37f953fd8d0cbfd20",

	"senderAddress": "0x8A1D90a716DB145ef5677553fAc096608416eEE9",

	"senderSignature": "02243584bd5c6a38278f2ef701cff8a4a4d0702424383bc79d182"

}

Send vote transaction

Send a vote transaction

Type: POST

Path: /rpc/transactions/vote

Request:

80

Request fields:

timestamp Long

Transaction creation time in

millis

Attribute Type Description

fee

Long

Transaction fee

hash String

Transaction hash

voteTypeId

 Long

Vote type

DelegateKey

 String

Delegate’s public key

senderPublicKey

 String

Sender’s public key

senderSignature String

Sender’s signature

senderAddress

 String

Sender’s address

Response:

{

 "timestamp": 1533201843817,

 "version": "1.0.0",

 "payload": {

 "timestamp": 1435203843513,

 "fee": 20,

 "voteTypeId" : 1,

 "delegateKey": "02f4cafe456378101d7f81b183707510030ee36a2e744dd57e77",

 	"senderPublicKey": "02b28915709de883bc487fe076d933f864b3e37f953fd8d0cbfd20",

 	"senderAddress": "0x8A1D90a716DB145ef5677553fAc096608416eEE9",

 	"senderSignature": "02243584bd5c6a364356611e24cff8a4a4d0702424383bc79d182",

 	"hash": "6709e3516a51f28017147ebc0425eb83822ac56b892011ab9b",

 "blockHash": null }

}

81

Response fields:

timestamp Long

Transaction creation time in

millis

Attribute Type Description

fee

Long

Transaction fee

voteTypeId Long

Vote type id (1 - FOR, 2 -

AGAINST)

DelegateKey String

Delegate’s public key

senderPublicKey

 String

Sender’s public key

senderAddress String

Sender’s address

hash

 String

Transaction hash

senderSignature

 String

Sender’s signature

blockHash

 String

Block hash

Get vote transaction	

Get a vote transaction by hash

Type: GET

Path: /rpc/transactions/vote/{hash}

Parameters: hash

hash String

Hash of the current vote

transaction

Attribute Type Description

82

Response:

{

 "timestamp": 1533201843817,

 "version": "1.0.0",

 "payload": {

 "timestamp": 1435203843513,

 "fee": 20,

 "voteTypeId" : 1,

 "delegateKey": "02f4cafe456378101d7f8660dda0fa2a3830ee36a2e744dd57e77",

 	"senderPublicKey": "02b28915709de8260a529155fb8333f864b3e37f953fd8d0cbfd20",

 	"senderAddress": "0x8A1D90a716DB145ef5677553fAc096608416eEE9",

 	"senderSignature": "02243584bd5c6a38278f2ef701566114a4d0702424383bc79d182",

 	"hash": "6709e3516a51fac52a6a3528017147ebc0425eb83822ac56b892011ab9b",

 "blockHash": "2e7a386fe5f117e9ff05f14f506852c531c60b86cd59e55be9818e155"

 }

}

Response fields:

timestamp Long

Transaction creation time in

millis

Attribute Type Description

fee

Long

Transaction fee

voteTypeId Long

Vote type id (1 - FOR, 2 -

AGAINST)

DelegateKey String

Delegate’s public key

senderPublicKey

 String

Sender’s public key

senderAddress String

Sender’s address

hash

 String

Transaction hash

senderSignature

 String

Sender’s signature

blockHash

 String

Block hash

83

Get delegates

Get a list of all delegates

Type: GET

Path: /rpc/delegates

Parameters: PageRequest is supported

Response:

{

 "timestamp": 1536059448300,

 "version": "1.0.0",

 "payload": {

 "totalCount": 2,

 "list": [

 {

 "address": "0x51c5311F25206De4A9C6ecAa1Bc2Be257B0bA1fb",

 "publicKey": "02c4aedc4a7e2d8cc0e73e6dfb428a1b74207cb61143babd3e04be63f"

 },

 {

 "address": "0x51c5311F25206De4A9C6ecAa1Bc2Be257B0bA1fb",

 "publicKey": "029a9b6a446884a00660d63ab80effceb0a80f86bd7b21fbf5ee1550ac"

 }

]

 }

}

totalCount Long

Total delegates count

list

DelegateDto[]

List of delegates info

Attribute Type Description

Response fields:

Payload:

84

DelegateDto:

publicKey String

Delegate’s public key

Attribute Type Description

address String

Wallet address. Starts with 0x

Get active delegates

Get a list of all active delegates

Type: GET

Path: /rpc/delegates/active

Parameters: PageRequest is supported

Response:

{

 "timestamp": 1536059448300,

 "version": "1.0.0",

 "payload": {

 "totalCount": 2,

 "list": [

 {

 "address": "0x51c5311F25206De4A9C6ecAa1Bc2Be257B0bA1fb",

 "publicKey": "02c4aedc4a7e2d8cc0e73e6dfb42807cb61143babd3e04be63f"

 },

 {

 "address": "0x51c5311F25206De4A9C6ecAa1Bc2Be257B0bA1fb",

 "publicKey": "029a9b6a44d2e322af68a80f86bd7b21fbf5ee1550ac"

 }

]

 }

}

85

DelegateDto:

publicKey String

Delegate’s public key

Attribute Type Description

address String

Wallet address. Starts with 0x

totalCount Long

Total delegates count

list

DelegateDto[]

List of delegates info

Attribute Type Description

Response fields:

Payload:

86

Response:

{

 "timestamp": 1536926823153,

 "version": "1.1.0",

 "payload": {

 "totalCount": 22,

 "list": [

 {

 "address": "0x51c5311F25206De4A9C6ecAa1Bc2Be257B0bA1fb",

 "delegateKey": "02c4aedc4a7e2d8cc0e73e6dc8a1b74207cb61143babd3e04be63f",

 "rating": 346,

 "votesCount": 1,

 "timestamp": 1532345018021

 }

]

 }

}

totalCount Long

Total delegates count

list

DelegateDto[]

List of delegates info

Attribute Type Description

Response fields:

Payload:

Get delegates view

Get a list of all delegates rating

Type: GET

Path: /rpc/delegates/view

Parameters: PageRequest is supported

87

ViewDelegateDto:

address String

Wallet address. Starts with 0x

rating Long

Delegate’s rating

Attribute Type Description

delegateKey

 String

Delegate’s public key

timestamp Long

Delegate registration time in

millis

voteCount
 Long

Amount of votes for a delegate

88

Response smart-contract deploy successfully:

{

 "timestamp": 1550055064386,

 "version": "1.0.0",

 "payload": {

 "transactionHash": "6709e3516a51fac52a6aa77ebc0425eb83822ac56b892011ab9b",

 "results": [

 {

 "from": "0x8A1D90a716DB145ef5677553fAc096608416eEE9",

 "to": "0xC2d5a01Cc22295fF4cC49dB5A0013cE911D9A5cb",

 "amount" : 1000,

 "data": "0x594E9Ec3472Af40B187D5BE0E9F1D884C7c304a2",

 "error": null

 },

 {

 "from": "0xC2d5a01Cc22295fF4cC49dB5A0013cE911D9A5cb",

 "to": "0x8A1D90a716DB145ef5677553fAc096608416eEE9",

 "amount" : 50,

 "data": null,

 "error": null

 }

]

 }

}

Get receipt

Get a receipt by hash of the transaction

Type: GET

Path: /rpc/transactions/{hash}/receipt

Parameters: hash

hash String

Hash of current transaction

Attribute Type Description

89

Response smart-contract deployment error:

{

 "timestamp": 1550055064386,

 "version": "1.8.0",

 "payload": {

 "transactionHash": "6709e3516a51fac52a6aa78a6ebc0425eb83822ac56b892011ab9b",

 "results": [

 {

 "from": "0x8A1D90a716DB145ef5677553fAc096608416eEE9",

 "to": "0xC2d5a01Cc22295fF4cC49dB5A0013cE911D9A5cb",

 "amount" : 1000,

 "data": null,

 "error": "Contract is not deployed. The fee was charged, but this is not enough for deploy."

 }

]

 }

}

transactionHash String

Transaction hash

results

ReceiptResultDto[]

List of receipt result

Attribute Type Description

Response fields:

ReceiptResultDto:

from String

Sender’s wallet address

amount String

Transfer amount

Attribute Type Description

to String

Recipient’s wallet address

error String

Transaction error

data String

Additional information

{

amount: 0

data: "dgfn4003b010033696f2f6f70656e6675747572652f636861696e2f7"

fee: 332

hash: "97f8997f3bbc157960b12e823e519f23962f9a7d7bad19b6f7f36c6a14"

recipientAddress: null

senderAddress: "0x51c5311F25206De4A9C6ecAa1Bc2Be257B0bA1fb"

senderPublicKey: "032f68d94d60b329bee5915515b8106ac452f622ce922d40d0c53"

senderSignature: "MEUCICF+mX3Qo79d5rxIloKlsphLhn54w4gjpMBilvWJ+xFNc8="

timestamp: 1550663744754

}

Get cost of execution/deployment  

of the contract

Get a cost of execution or deployment of the contract

Type: POST

Path: /rpc/contracts/estimation

Request:

Response:

{

 "timestamp": 1550665330006,

 "version": "1.8.0",

 "payload": 332

}

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90

